C-Terminal Alternative Splicing of CaV1.3 Channels Distinctively Modulates Their Dihydropyridine Sensitivity s

نویسندگان

  • Hua Huang
  • Dejie Yu
  • Tuck Wah Soong
چکیده

The transcripts of L-type voltage-gated calcium channels (CaV) 1.3 undergo extensive alternative splicing. Alternative splicing, particularly in the C terminus, drastically modifies gating properties of the channel. However, little is known about whether alternative splicing could modulate the pharmacologic properties of CaV1.3 in a manner similar to the paralogous CaV1.2. Here we undertook the screening of different channel splice isoforms harboring splice variations in either the IS6 segment or the C terminus. Unexpectedly, while inclusion of exon 8a or 8, which code for IS6, did not alter dihydropyridine (DHP) sensitivity, distinct pharmacologic properties were observed for the various C-terminal splice isoforms. In the presence of external Ca, fast inactivating splice variants including CaV1.342a and CaV1.343s with intact calmodulin-IQ domain interaction showed consistently low DHP sensitivity. Interestingly, attenuation of calciumdependent inactivation with overexpression of calmodulin34 did not enhance the sensitivity of CaV1.342a, suggesting that the low DHP sensitivity may not be a result of fast channel inactivation. Alternatively, disruption of calmodulin-IQ domain binding in the CaV1.3D41 and full-length CaV1.342 channels was associated with heightened DHP sensitivity. In distinct contrast to the well-known modulation of DHP blockade of CaV1.2 channels, this study has therefore uncovered a novel mechanism for modulation of the pharmacologic properties of CaV1.3 channels through posttranscriptional modification of the C terminus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-terminal alternative splicing of CaV1.3 channels distinctively modulates their dihydropyridine sensitivity.

The transcripts of L-type voltage-gated calcium channels (CaV) 1.3 undergo extensive alternative splicing. Alternative splicing, particularly in the C terminus, drastically modifies gating properties of the channel. However, little is known about whether alternative splicing could modulate the pharmacologic properties of CaV1.3 in a manner similar to the paralogous CaV1.2. Here we undertook the...

متن کامل

Cell-type-specific tuning of Cav1.3 Ca2+-channels by a C-terminal automodulatory domain

Cav1.3 L-type Ca(2+)-channel function is regulated by a C-terminal automodulatory domain (CTM). It affects channel binding of calmodulin and thereby tunes channel activity by interfering with Ca(2+)- and voltage-dependent gating. Alternative splicing generates short C-terminal channel variants lacking the CTM resulting in enhanced Ca(2+)-dependent inactivation and stronger voltage-sensitivity u...

متن کامل

Identification of a new C-terminal splice variant of CaV1.3 L-type calcium channels with unique functional properties

Background In L-type voltage-gated calcium channels (VGCCs) the long C-terminal tail contains several sites for modulation by protein-protein interaction. CaV1.3 VGCCs (CaV1.3L) activate at negative voltages and support sinoatrial node pacemaking and hearing, and shape neuronal excitability. In CaV1.3L an intermolecular automodulatory C-terminal interaction (CTM) has been described which affect...

متن کامل

Erbin Enhances Voltage-Dependent Facilitation of Cav1.3 Ca Channels through Relief of an Autoinhibitory Domain in the Cav1.3 1 Subunit

Cav1.3 (L-type) voltage-gated Ca 2 channels have emerged as key players controlling Ca 2 signals at excitatory synapses. Compared with the more widely expressed Cav1.2 L-type channel, relatively little is known about the mechanisms that regulate Cav1.3 channels. Here, we describe a new role for the PSD-95 (postsynaptic density-95)/Discs large/ZO-1 (zona occludens-1) (PDZ) domain-containing prot...

متن کامل

Functional expression and characterization of a voltage-gated CaV1.3 (alpha1D) calcium channel subunit from an insulin-secreting cell line.

L-type calcium channels mediate depolarization-induced calcium influx in insulin-secreting cells and are thought to be modulated by G protein-coupled receptors (GPCRs). The major fraction of L-type alpha1-subunits in pancreatic beta-cells is of the neuroendocrine subtype (CaV1.3 or alpha1D). Here we studied the biophysical properties and receptor regulation of a CaV1.3 subunit previously cloned...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013